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Abstract

Nonlinear modes of snap-through motions of a shallow arch are analyzed. Dynamics of shallow arch is modeled by a

two-degree-of-freedom system. Two nonlinear modes of this discrete system are treated. The methods of Ince

algebraization and Hill determinants are used to study stability of nonlinear modes. The analytical results are compared

with the data of the numerical simulations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The shallow arches are used in civil, mechanical and aerospace engineering as parts of complex structures.
Arches are used in electromechanical equipments to switch between several equilibrium positions. Moreover,
the shallow aches can be used for vibration isolation [1] and for vibrations absorption [2–4].

Many researches are studied static and dynamics of the shallow arches. Timoshenko [5] considered the
simply supported sinusoidal arch under the action of a uniformly distributed load. He determined the lateral
static load, which leads to the snap-through motions of shallow arch. Dinnik and Grigoluk [6,7] obtained that
snap-through motions consist of both symmetric and asymmetric simply supported beams modes. Fung and
Kaplan [8] generalized the results of static analysis of shallow arches to the case of arbitrary lateral loads
including concentrated forces.

One of the first efforts to analyze the snap-through motions of shallow arch was presented in the papers
[9,10]. In particular, the sufficient conditions of stability and instability of shallow arches under the action of
static loads were considered in Ref. [9]. Asymmetric snap-through motions of shallow arches under the action
of high-frequency periodic force were considered by Hung [11]. In this paper, the snap-through vibrations
were split into the fast and slow motions. The asymptotic procedure for analysis of snap-through motions of
shallow arches was suggested in the book [12]. Lenci and Tarantino [13] were used the Melnikov function to
study the chaotic snap-through motions of shallow arches. The arch under the action of the transverse
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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distributed force is considered in the paper [14]. Moreover, the lateral load with prescribed end motion with
constant speed acts additionally on this arch. The snap-through motions of the arch with different velocities of
lateral forces were considered. The arch with one end pinned and the other end attached to a mass is
considered in the paper [15]. The simply supported arch under the action of moving load with constant
velocity is considered in the paper [16].

In the present paper, the nonsymmetrical snap-through motions of the shallow arch are considered.
Two-degree-of-freedom nonlinear model is derived to study these motions. The nonlinear vibrations modes of
the snap-through truss are considered. One of these modes corresponds to the symmetrical snap-through
motions of the shallow arch and the other mode corresponds to the nonsymmetrical snap-through motions.
The Ince algebraization and the method of Hill determinants are used to study stability of the snap-through
motions.
2. The problem formulation

Motions of the shallow arch (Fig. 1) are considered in this paper. The equation of arch motions is the
following [9–11]:

EA

2L
yxx

Z L

0

qy0

qx

� �2

�
qy

qx

� �2
( )

dxþ EIðy� y0Þxxxx þ rAytt ¼ 0, (1)

where y(x,t) is a dynamic flexure of the arch; y0(x) is an initial flexure of the arch; A and I are the area and
moment of inertia of a cross section; E and r are the Young’s modulus and material density of the arch; L is a
length of the arch. The initial flexure of the arch has the following form:

y0 ¼ l1 sin
px

L

� �
.

The dimensionless variables are introduced in the following form:

u0 ¼
y0

l1
; u ¼

y

l1
; x ¼

p
L

x; t ¼
p
L

� �2 ffiffiffiffi
E

r

s
l1t. (2)

Thin arches are considered in this paper, so these arches satisfy the following condition:

� ¼
r2

l21
51, (3)

where r is a radius gyration of cross-section. Now the equation of motions in dimensionless form can be
written as

uxx

2p

Z p

0

ðu2
0;x � u2

xÞdxþ �ðu� u0Þxxxx þ utt ¼ 0, (4)

where

u0 ¼ sinðxÞ. (5)
Fig. 1. The shallow arch.
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The dimensionless flexure of the arch is presented in the form

u ¼ sinðxÞ þ
X
i¼1

ZiðtÞ sinðixÞ, (6)

where Z1, Z2,y are generalized coordinates. Then expressions (5) and (6) are substituted into Eq. (4) and the
separation of variables is carried out. As a result, the following dynamical system is derived:

€Z1 þ �Z1 ¼ ð1þ Z1ÞwðZ1; Z2; . . .Þ,

€Zi þ �i
4Zi ¼ i2ZiwðZ1; Z2; . . .Þ; i ¼ 2; 3; . . . ,

wðZ1; Z2; . . .Þ ¼ � 0:5 Z1 þ 0:5
Xn

i¼1

Z2i i2

 !
. ð7Þ

Only two vibration modes as shown in Eq. (6) are taken into account in the future analysis: Z3 ¼ Z4 ¼? ¼ 0.
The following new variables are introduced: y1 ¼ 1+Z1, y2 ¼ Z2. Then the equations of motion have the
following form:

€y1 þ �ðy1 � 1Þ ¼ y1wðy1; y2Þ,
€y2 þ 16�y2 ¼ 4y2wðy1; y2Þ,

wðy1; y2Þ ¼ � 0:5ð0:5ðy21 � 1Þ þ 2y22Þ. ð8Þ

The equilibriums of the dynamical system (8) are considered. The symmetric static flexure (y2 ¼ 0; y1 6¼0) is
analyzed. This flexure corresponds to the exact solution of the second equation of system (8). Then the
equilibriums are defined from the cubic equations

�ðy1 � 1Þ ¼ �y114ðy
2
1 � 1Þ. (9)

If

�o 1
16
, (10)

then three equilibriums exist in dynamical system (8). These fixed points are defined in the following form:

yð1Þ1 ¼ 1; yð2Þ1 ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�
p

2
; yð3Þ1 ¼

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�
p

2
. (11)

At e ¼ 1/16 the saddle-node bifurcation of the equilibriums take place in the dynamical system Eq. (8). In this
point the equilibriums yð2Þ1 and yð3Þ1 are merged. If e41/16, only one equilibriums yð1Þ1 ¼ 1 exists.

3. Nonlinear normal modes (NNMs)

NNMs are a nonlinear extension of the normal modes of linear systems. NNM of undamped discrete system
is a synchronous periodic vibration where all material points of the system reach their extreme values
simultaneously. When a discrete system vibrates in a NNM, the oscillations are presented by a line in its
configuration space. This line is termed a ‘‘modal line’’.

The NNM y2 ¼ 0 always exists in system (8). The NNM y1 ¼ 0 exists in the unperturbated system (8)
(e ¼ 0). At e 6¼0 this NNM can be presented as

y1 ¼ y1ðy2Þ ¼ �gðy2Þ. (12)

So, y2 are a new independent variable. The standard procedure from Refs. [12,17] is used to derive the
differential equation of the NNMs in the system configuration space. The following relation is used:

€y1ðtÞ ¼ y001ðy2Þ_y
2

2ðtÞ þ y01ðy2Þ€y2ðtÞ, (13)

where the prime denotes a differentiation with respect to y2. The following energy integral exists in system (8):

0:5ð_y
2

1 þ
_y
2

2Þ þP ¼ h, (14)
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P ¼ P0 þ �P1 ¼
1
2
y21y

2
2 þ

1
16
y41 �

1
8
y21 �

1
2
y22 þ y42 þ �

1
2
y21 � y1 þ 8y22

� �
,

where P is a potential energy of the system; 0:5ð_y
2

1 þ
_y
2

2Þ is a kinetic energy of the system; h is a value of the
system energy. The following expression is derived from Eq. (14):

_y
2

2ðtÞ ¼
2ðh�PÞ

1þ y
02
1 ðy2Þ

. (15)

Now relations (13) and (15) are substituted into the first equation of system (8). Taking into account the first
Eq. (8), the differential equation for the NNMs trajectories in configuration space is derived:

y001
2ðh�PÞ

1þ y
02
1

� y01
qP
qy2
¼ �

qP
qy1

. (16)

Note, that Eq. (16) has singular points at the maximum isoenergetic surface

Pðy2;maxÞ ¼ h (17)

where y2,max is the vibration amplitude. Eq. (16) must be completed by the following boundary conditions:

y01
qP
qy2

	 

y2¼y2;max

¼
qP
qy1

����
y2¼y2;max

. (18)

Eq. (18) is the condition of orthogonality of the NNM trajectory to the maximum isoenergetic surface.
Therefore, this trajectory can be analytically continued to the maximum isoenergetic surface [12,17].

Now Eq. (12) is substituted into Eq. (16) and the terms O(e) are collected. As a result the following equation
is derived:

g002ðh�P0jy1¼�gÞ þ g0ð4y32 � y2Þ � 1� 0:25gþ gy22 ¼ 0. (19)

Taking into account relation (14), Eq. (17) is rewritten as

P0ðy2;maxÞ ¼ h. (20)

This equation is presented as

y42;max �
1
2y

2
2;max ¼ h. (21)

The terms O(e) in the boundary conditions (18) have the following form:

g0ðy2;maxÞð4y
3
2;max � y2;maxÞ � 1� 0:25gðy2;maxÞ þ gðy2;maxÞy

2
2;max ¼ 0. (22)

The function g(y2) is presented in the form of power series:

gðy2Þ ¼
X1
i¼0

biy
i
2. (23)

Series (23) is substituted into Eq. (19) and terms of the same degree of y2 are equated. As a result the system of
linear algebraic equations with respect to bi is derived. If series (23) is substituted into Eq. (22), the additional
linear algebraic equation is derived. Thus, the system of linear algebraic equations with respect to (b0, b1,y) is
obtained. The solution of this system is the following:

b2j�1 ¼ 0; j ¼ 1; 2; . . . ,

b0 ¼
b0 þ b2y

2
2;max þ b4y

4
2;max þ b6y

6
2;max þ b8y

8
2;max þ b10y

10
2;max þ b12y

12
2;max

a0 þ a2y
2
2;max þ a4y

4
2;max þ a6y

6
2;max þ a8y

8
2;max þ a10y

10
2;max þ a12y

12
2;max þ a14y

14
2;max

,

b2 ¼
g0 þ g2y

2
2;max þ g4y

4
2;max þ g6y

6
2;max þ g8y

8
2;max þ g10y

10
2;max

a0 þ a2y
2
2;max þ a4y

4
2;max þ a6y

6
2;max þ a8y

8
2;max þ a10y

10
2;max þ a12y

12
2;max þ a14y

14
2;max

,

b4 ¼
d0 þ d2y

2
2;max þ d4y

4
2;max

w0 þ w2y
2
2;max þ w4y

4
2;max þ w6y

6
2;max þ w8y

8
2;max þ w10y

10
2;max

, ð24Þ
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where

a0 ¼ � 0:2197; a2 ¼ 1:1133; a4 ¼ 13:8594; a6 ¼ �133:938,

a8 ¼ 489:5; a10 ¼ �1018; a12 ¼ 1184; a14 ¼ �640,

b0 ¼ 0:8789;b2 ¼ �2:5781;b4 ¼ �70:6875;b6 ¼ 462:75;b8 ¼ �1242,

b10 ¼ 1872;b12 ¼ �1152,

g0 ¼ 0:2344; g2 ¼ �1:4375; g4 ¼ �12; g6 ¼ 65:5; g8 ¼ �144; g10 ¼ 160;

d0 ¼ 0:25; d2 ¼ �1:25; d4 ¼ 12,

w0 ¼ � 0:2344; w2 ¼ 0:6875; w4 ¼ 17:25; w6 ¼ �109; w8 ¼ �0:2344; w10 ¼ �160.

The numerical calculations show, that the terms b6y
6
2; b8y

8
2; ::: are essentially less than the terms of the smaller

degrees. Therefore, in the future numerical analysis only the first three terms of the expansion (23) are taken
into account.

Now the motions in time on the modal line (23) and (24) are determined. The NNM (12) is substituted into
the second equation of system (8). As a result the following ODE is derived:

€y2 þ 16�y2 þ �2y2g2ðy2Þ � y2 þ 4y32 ¼ 0. (25)

The equilibriums of system (8) (y1 6¼0; y2 ¼ 0) are treated in Section 2. Here the equilibriums of Eq. (25), which
differ from the equilibriums (y1 6¼0; y2 ¼ 0), are considered. The equilibriums of system (25) can be determined
from the following cubic equation:

16�y2 ¼ 4y2 1
4
ð1�Oð�2ÞÞ � y22
� 

. (26)

Eq. (26) has the following roots:

yð1Þ2 ¼ 0; yð2;3Þ2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16��Oð�2Þ

p
2

.

Thus, three equilibriums exist at eo1/16. This inequality coincides with Eq. (10).
The harmonic balance method is used to study the periodic solutions of system (25). These periodic motions

are taken in the form

y2ðtÞ ¼ y2;max cosðotÞ. (27)

Solution (27) is substituted into Eq. (25). As a result, the equation for the frequency of the oscillations is
derived:

o2 ¼ 16�þ �2ðb2
0 þ b0b2y

4
2;max þ 0:375ðb2

2 þ 2b0b4Þy
4
2;max þ 0:625b2b4y

6
2;maxÞ � 1þ 3y22;max. (28)

The backbone curves are calculated by Eq. (28). These curves are shown in Fig. 2. Fig. 2a,b corresponds to the
values e ¼ 0.01 and 0.05, respectively. The stable and unstable vibrations are shown by solid and dotted lines,
respectively. Stability analysis of these vibrations is presented in Section 4.

The direct numerical integration of system (8) is carried out to estimate the accuracy of the above-derived
NNM. For this integration the initial conditions, corresponding to the NNM (12), are taken in the following
form:

_y1ð0Þ ¼ _y2ð0Þ ¼ 0; y2ð0Þ ¼ y2;max; y1ð0Þ ¼ �gðy2;maxÞ.

Fig. 3 shows the results of the numerical simulations of the NNM trajectories in the system configuration
space. These trajectories correspond to the stable NNM and were obtained for the parameters: (a)�e ¼ 0.06;
h ¼ 14; (b)�e ¼ 0.03; h ¼ 1.35; (c)�e ¼ 0.03; h ¼ 2.86.

The direct numerical simulations of the dynamical system (8) are carried out in a case of unstable NNM too.
Fig. 4 shows results of these calculations in the system configuration space at e ¼ 0.06; h ¼ 0.09. Obviously,
almost periodic snap-through motions take place when the NNM is unstable. The red lines in Figs. 3 and 4
show the nonlinear modes, which are obtained analytically. Eqs. (12), (23), and (24) are used to calculate the
red lines.
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Fig. 3. Results of direct numerical simulation of the nonlinear mode (12), (23), and (24). The trajectories correspond to the following

parameters: (a) e ¼ 0.06, h ¼ 14; (b) e ¼ 0.03, h ¼ 1.35; (c) e ¼ 0.03, h ¼ 2.86.

Fig. 2. The backbone curves of the nonlinear mode (12), (23), and (24): (a) e ¼ 0.01 and (b) e ¼ 0.05.

I. Breslavsky et al. / Journal of Sound and Vibration 311 (2008) 297–313302
Now the motions on the second NNM y2 ¼ 0 are analyzed. The relation y2 ¼ 0 is substituted into the first
equation of system (8). The harmonic balance method is used to study vibrations in the obtained equation.
These vibrations are presented in the following form:

y1ðtÞ ¼ B0 þ B1 cosðotÞ þ B2 cosð2otÞ. (29)
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Fig. 4. Results of direct numerical simulation of the unstable NNM (12), (23) and (24).
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Following the harmonic balance method, the parameters B0, B1, B2 are determined from the next system of
nonlinear algebraic equations:

4ð�B0 � �Þ þ B3
0 þ 1:5B0B

2
1 þ 0:75B2

1B2 þ 1:5B0B2
2 þ 1:5B1B

2
2 � B0 ¼ 0,

� 3�B2 þ 0:75B2 � 2:25B2
0B2 � 0:375B2

1B2 � 3B0B2
2 þ 0:375B0B

2
1 þ 0:1875B3

2 ¼ 0,

� o2B1 þ �B1 þ 0:75B1B
2
0 þ 0:1875B3

1 þ 0:75B0B1B2 � 0:25B1 ¼ 0. ð30Þ

System (30) is used to calculate the backbone curves. Fig. 5 shows results of these calculations. Fig. 5a,b
corresponds to e ¼ 0.01 and 0.05, respectively. The stable and unstable vibrations are shown by solid and
dotted lines, respectively. The stability analysis of these vibrations is presented in the next section.
4. Stability of NNM

It is assumed, that the periodic motions ~y1ðtÞ; ~y2ðtÞ take place in the dynamical system (8). The small
perturbations u, v from the periodic motions, which are determined by the equations y1 ¼ ~y1ðtÞ þ u; y2 ¼
~y2ðtÞ þ v, are considered. These perturbations satisfy the following ODEs:

€uþ �uþ 3
4
u~y

2

1 þ 2v~y1 ~y2 � 1
4
uþ u~y

2

2 ¼ 0, (31a)

€vþ 16�vþ 12v~y
2

2 þ 2u~y1 ~y2 � vþ v~y
2

1 ¼ 0. (31b)

Now the stability of the NNM y2 ¼ 0 is investigated. Then the system of variational equations can be
written as

€uþ �uþ 3
4
u~y

2

1 �
1
4
u ¼ 0, (32a)

€vþ 16�v� vþ v~y
2

1 ¼ 0. (32b)

Note, that the variables u, v define the perturbations along the NNM and in the orthogonal direction,
respectively. We remind, that the considered system (8) is conservative. The periodic motions of such system
are unstable in the sense of Lyapunov, but such motions are orbital stable [2,17]. Therefore, in this paper
orbital stability of the NNM is studied. Motions along the NNM are not affected on the orbital stability [2].
Therefore, only the small perturbations in the orthogonal directions, which are described by Eq. (32b), must
be considered. The Ince algebraization [18–20] is used to study stability of the NNM. The variable x ¼ ~y1ðtÞ is
chosen as new independent variable instead of t. In this case a presentation of the solutions in time is not used.
This is the advantage of such an approach.
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Fig. 5. The backbone curves of nonlinear mode (29): (a) e ¼ 0.01 and (b) e ¼ 0.05.
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As follows from system (8), the variable x satisfy the equation

€x ¼ ��ðx� 1Þ � 1
4
x3 þ 1

4
x. (33)

Then, the following equation, which follows from the energy integral, is true:

_x2 ¼ 2ðh�Pjy2¼0Þ, (34)

Pjy2¼0 ¼
1
16
y41 �

1
8
y21 þ �

1
2
y21 � y1

� �
.
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Taking into account €v ¼ v00 _x2 þ v0 €x, the variational Eq. (32b) is rewritten in the following form:

2v00ðxÞðh�Py2¼0Þ þ v0ðxÞ €xþ 16�vðxÞ � vðxÞ þ vðxÞx2 ¼ 0, (35)

where prime denotes a differentiation with respect to the new independent variable. Note, that the indexes of
singular points of Eq. (35) are the following [18,19]: a1 ¼ 0 and a2 ¼ 1/2. It is shown in Ref. [18], that the
solutions on the boundaries of stable/unstable regions are determined as

v1 ¼
X1
i¼0

aix
i, (36a)

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 1 � xÞðx� X 2Þ

p X1
i¼0

bix
i, (36b)

v3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� X 2

p X1
i¼0

gix
i, (36c)

v4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1 � x

p X1
i¼0

dix
i, (36d)

where X1, X2 are amplitudes of vibrations, which are determined from the equation:

Py2¼0 ¼ h. (37)

The solutions v1, v2, v3, and v4 in Eqs. (36a)–(36d) are substituted into Eq. (35). As a result, four nonlinear
algebraic equations with respect to x are derived:

2
X1
i¼2

iði � 1Þaix
i�2 h�

1

16
x4 þ

1

8
x2 � �

1

2
x2 � x

� �� �
þ
X1
i¼1

iaix
i�1 ��ðx� 1Þ �

1

4
x3 þ

1

4
x

� �

þ ð16�� 1þ x2Þ
X1
i¼0

aix
i ¼ 0, ð38aÞ

2 �
ðX 1 � X 2Þ

2

4

X1
i¼0

bix
i � ð2x� X 1 � X 2ÞðX 1 � xÞðx� X 2Þ

X1
i¼1

ibix
i�1

 

þðX 1 � xÞ2ðx� X 2Þ
2
X1
i¼2

iði � 1Þbix
i�2

!
h�

1

16
x4 þ

1

8
x2 � �

1

2
x2 � x

� �� �

þ �
1

2
ð2x� X 1 � X 2ÞðX 1 � xÞðx� X 2Þ

X1
i¼0

bix
i þ ðX 1 � xÞ2ðx� X 2Þ

2
X1
i¼1

ibix
i�1

 !

� ��ðx� 1Þ �
1

4
x3 þ

1

4
x

� �
þ ð16�� 1þ x2ÞðX 1 � xÞ2ðx� X 2Þ

2
X1
i¼0

bix
i ¼ 0, ð38bÞ

2 �
1

4

X1
i¼0

gix
i þ ðx� X 2Þ

X1
i¼1

igix
i�1 þ ðx� X 2Þ

2
X1
i¼2

iði � 1Þgix
i�2

 !
h�

1

16
x4 þ

1

8
x2 � �

1

2
x2 � x

� �� �

þ
1

2
ðx� X 2Þ

X1
i¼0

gix
i þ ðx� X 2Þ

2
X1
i¼1

igix
i�1

 !
��ðx� 1Þ �

1

4
x3 þ

1

4
x

� �

þ ð16�� 1þ x2Þðx� X 2Þ
2
X1
i¼0

gix
i ¼ 0, ð38cÞ
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2 �
1

4

X1
i¼0

dix
i þ ðx� X 1Þ

X1
i¼1

idix
i�1 þ ðx� X 1Þ

2
X1
i¼2

iði � 1Þdix
i�2

 !
h�

1

16
x4 þ

1

8
x2 � �

1

2
x2 � x

� �� �

þ
1

2
ðx� X 1Þ

X1
i¼0

dix
i þ ðx� X 1Þ

2
X1
i¼1

idix
i�1

 !
��ðx� 1Þ �

1

4
x3 þ

1

4
x

� �

þ ð16�� 1þ x2Þðx� X 1Þ
2
X1
i¼0

dix
i ¼ 0. ð38dÞ

Equating the coefficients at the same degrees of x, four independent systems of homogeneous linear algebraic
equations are derived from Eqs. (38a)–(38d). These systems have nontrivial solutions, if their determinants are
equal to zero. Every of these determinants give the boundaries between stable and unstable vibrations on the
parametric plane (h, e).

Fig. 6 shows the boundary between stable/unstable oscillations. Region of the unstable oscillations is
shaded. Numerical calculations of the boundaries of unstable vibrations are carried out using the determinants
of the different orders. These calculations show, that the determinants of the six order are enough for reliable
results. As an example, the determinant of the six order, which is derived from the solution v2, is presented in
Appendix A.

The boundary between stable and unstable vibrations (Fig. 6) is checked by calculations of the fundamental
matrixes and the multipliers [21]. The obtained results confirm the above-presented analysis.
Fig. 6. The region of the unstable oscillations.
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Now a stability of the second NNM (12) is analyzed. Then the system of the variational equation (31) has
the following form:

€uþ u~y
2

2 �
1
4
uþ �ðuþ 2vgð~y2Þ~y2Þ þOð�2Þ ¼ 0, (39a)

€vþ 12v~y
2

2 � vþ �ð16vþ 2ugð~y2Þ~y2Þ þOð�2Þ ¼ 0, (39b)

where the function ~y2ðtÞ is determined by Eq. (25).
A boundary between stable and unstable solutions, which corresponds to the periodic solutions of system

(39) with a period T ¼ 2po�1, is considered. Following the book [22], this boundary is presented as the
Fourier series:

u ¼
X1
i¼0

U2i cosð2iotÞ; v ¼
X1
i¼1

V 2i�1 cosðð2i � 1ÞotÞ. (40)

Series (40) is substituted into Eq. (39) and the coefficients of the same harmonics are equated. As a result, the
homogeneous system of linear algebraic equations is derived. The equation of the boundary between stable
and unstable solutions has the following form:

detðZÞ ¼ 0, (41)

where

detðZÞ ¼ det

m2 0:5c1 0:25y22;max 0:5c3 0 0:5c5

c1 �o2 þm1 0:5c1 3y22;max 0:5c3 0

0:5y22;max 0:5c1 �4o2 þm2 0:5c1 0:25y22;max 0:5c3

c3 3A2 0:5c1 �9o2 þm1 0:5c1 3y22;max

0 0:5c3 0:25y22;max 0:5c1 �16o2 þm2 0:5c1

c5 0 0:5c3 3y22;max 0:5c1 �25o2 þm1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
,

c1 ¼ y22;max�ð2b0 þ 1:5b2y
2
2;max þ 1:25b4y

4
2;maxÞ,

c3 ¼ y32;max� 0:5b2 þ
5
8
b4y

2
2;max

� �
,

c5 ¼
5
8
�b4y

5
2;max,

m1 ¼ � 1þ 6y22;max þ 16�,

m2 ¼ � 0:25þ 0:5y22;max þ �.

Now the boundary between stable and unstable vibrations, which corresponds to the solutions of the period
2T, is analyzed. The solutions of system (39) are presented by the Fourier series:

u ¼
X
i¼1

U2i�1 cos
2i � 1

2
ot

� �
;

v ¼
X
i¼1

V 2i�1 cos
2i � 1

2
ot

� �
: ð42Þ

Making some algebra, which is similar to the previous analysis of the period T solutions, it is derived the
following equation for the boundary between the stable and unstable solutions:

detðZ2Þ ¼ 0, (43)
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where

detðZ2 ¼Þ

¼ det

z1 �0:25o2 þm1 z1 3A2 z3 3A2

�0:25o2 þm2 z1 0:25A2 z1 0:25A2 z3

z1 3A2 z3 �2:25o2 þm1 z1 0

0:25A2 z1 �2:25o2 þm2 z3 0 z1

z3 3A2 z1 0 z5 �6:25o2 þm1

0:5A2 z3 0 z1 �6:25o2 þm2 z5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
,

z1 ¼ �A b0 þ 0:75b2A2 þ 5
8
b4A4

� �
,

z3 ¼ �A
3 0:25b2 þ

5
16

b4A2
� �

; z5 ¼
1
16
�b4A5. ð44Þ
Fig. 7. The region of the unstable NNM (12).
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Fig. 7 shows results of the numerical calculations of the boundary of the unstable trivial solutions of system
(39) on the parametric plane (e, h). These calculations are carried out according to Eqs. (43) and (44). The
shaded region corresponds to the unstable NNM (12).
5. The direct numerical simulations of the snap-through motons

In order to analyze the dynamics of the shallow arch, the deflection u(t, x) is expanded with respect to the
beam modes (6). Moreover, only two modes are taken into account. In order to check this expansion, and
the adequacy of the discrete model (8) to the partial differential equation (4), a direct numerical simulation of
Eq. (4) is carried out.
Fig. 8. The results of the direct numerical simulations.
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Using the difference approximations [23], the partial differential equation (4) is replaced by the following
system of ODE:

d2ui

dt2
þ �

1

h4
ðui�2 � 4ui�1 þ 6ui � 4uiþ1 þ uiþ2Þ � sinðxiÞ

	 

�

1

4ph
ðui�1 � 2ui þ uiþ1Þ

�
Xnþ1
j¼1

1

h2
ððuj�2 � uj�1Þ

2
þ ðuj�1 � ujÞ

2
Þ � ðcos2ðxj�1Þ þ cos2ðxjÞÞ

	 

¼ 0, ð45Þ

where i ¼ 1; n
�!

; n is the number of equations; xI ¼ ih. The solutions of Eq. (4) satisfy the boundary conditions,
which takes the following form:

u0 ¼ 0,

unþ1 ¼ 0,

u�1 � 2u0 þ u1 ¼ 0,

un � 2unþ1 þ unþ2 ¼ 0. ð46Þ

The aim of this section is a modeling of the NNM (12) by solving system (46). We would like to confirm, that
the motions, which are described by two terms of expansion (6) and (12), exist in system (4). Therefore, the
initial conditions of system (45) are obtained from Eqs. (12), (23), and (24). The following initial conditions
are used:

uið0Þ ¼ y1 sinðxiÞ þ y2 sinð2xiÞ,

dui

dt

����
t¼0

¼ 0; i ¼ 1; n
�!

,

y1 ¼ 0:024; y2 ¼ 1:263; � ¼ 0:02. ð47Þ

In calculations the number of equations (46) is taken as n ¼ 51. System (46) is solved by the Runge–Kutta
method. The solutions of this system in the form of the flexure of the shallow arch at the different values of
time are shown in Fig. 8. Fig. 8 verifies that the first and the second beam modes take part in the vibrations.
Moreover, the second mode dominates. As follows from the calculations higher beam modes do not take part
in these vibrations.
6. Conclusions

The snap-through motions of a shallow arch are investigated by means of nonlinear modes. These complex
motions are analyzed only due to the use of Rosenberg nonlinear modes [17]. We stress, that very effective
Shaw–Pierre nonlinear modes [24,25] exist, which allow one to study motions with many degree-of-freedom.
However, using this approach, only the motions close to equilibria can be analyzed.

Two nonlinear modes are analyzed by the Rosenberg approach. One of these modes corresponds to
symmetrical snap-through motions, when only the first spatial beam mode sin(x) takes part in the vibrations.
The second nonlinear mode corresponds to more complex motions of the system, when nonsymmetrical snap-
through motions take place. In this case, the first and the second spatial beam modes sin(x) and sin(2x)
interact. Besides the nonlinear modes which have been analyzed complex motions can exist [17], which are not
considered in this paper. These motions can be obtained by other analytical and numerical methods.

The backbone curves of the nonlinear modes are investigated and it is noted that the corresponding
backbone curves for both the nonlinear modes are hard. These nonlinear modes are unstable for small
amplitudes of vibration, when the dynamical system is close to a homoclinic orbit. Unstable motions are
transformed into stable ones, when the dynamical system is distant from the homoclinic orbit.

The nonlinear modes, which are obtained analytically, are checked by means of direct numerical integration
of the equations of motions. The results of the simulation show the vicinity of the analytical and numerical
data.
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The direct numerical integration of the nonlinear partial differential equations by means of the method of
finite difference is used to check the two mode approximation of the snap-though motions of the shallow arch.
The results indicate that the two mode approximation of motions is enough. Moreover, by means of the finite
difference integration, we confirm the existence of nonlinear modes of the arch vibration.
Appendix A. The equation of bondary of dynamical instability

The boundary of the dynamical instability is determined from the equation:

detðQÞ ¼ 0,

where nonzero elements of the matrix Q are the following:

q11 ¼ 0:5hk2
1 � 0:5�k1k2 þ e2k

2
2,

q21 ¼ � 0:5�k2
1 � 0:5e1k1k2 þ 0:5�k3 � 2e2k1k2,

q31 ¼ ð0:25k2
1 þ 0:5k3Þe1 � 1:5�k1 þ k2

2,

q41 ¼ �
15
8

k1k2 � 1:5k1e1 þ k2
2,

q51 ¼ �
1
32k

2
1 þ

7
8k3 þ e1 þ e2,

q61 ¼ �
13
8

k1,

q11 ¼ 0:5hk2
1 � 0:5�k1k2 þ e2k2

2,

q12 ¼ � 2hk1k2 þ �k
2
2,

q22 ¼ 0:5hk2
1 þ 2hk3 þ k2

2e1 � 0:5�k1k2 þ k2
2e2,

q32 ¼ � 3:5k1k2e1 � 0:5�k3 � 0:5�k2
1 � 6hk1 � 2k1k2e2,

q42 ¼ ð0:25k2
1 þ 2:5k3Þe1 � 2:5�k1 þ 4hþ 0:75k2

2 þ k3e2,

q52 ¼ � 1:25k1k2 � 6:5e1 � 2�� 2k1e2,

q62 ¼ �
1
32k

2
1 þ 0:5k3 þ 3e1 þ e2,

q13 ¼ 4hk2
2,

q23 ¼ � 2�k2
2 � 12k1k2,

q33 ¼ 4k2
2e1 þ 7:5�k1k2 þ 2hð0:25k2

1 þ 4k3Þ þ k2
2e2,

q43 ¼ � 10:5k1k2e1 � 0:5�k2
1 � 5:5�k3 � 20hk1 � k1k2e2,

q53 ¼ 0:25k2
2 þ ð0:25k2

1 þ 6:5k3 þ 2k2
2Þe1 þ 14:5�k1 þ 12hþ k3e2,

q63 ¼ �
1
8
k1k2 � 15:5k1e1 � 9�� 2k1e2,

q14 ¼ 0,

q24 ¼ 12hk2
2,

q34 ¼ � 9�k2
2 � 30hk1k2,

q44 ¼ 9k2
2e1 þ 23:5�k1k2 þ 2hð0:25k2

1 þ 9k3Þ þ k2
2e2,

q54 ¼ � 21:5k1k2e1 � 14:5�k3 � 0:5�k2
1 � 42hk1 � 2k1k2e2,

q64 ¼ � 0:5k2
2 þ ð0:25k2

1 þ 12:5k3Þe1 þ 34:5�k1 þ 24h� 1
8
k3 þ k3e2,
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q15 ¼ 0,

q25 ¼ 0,

q35 ¼ 24hk2
2,

q45 ¼ �20�k
2
2 � 56hk1k2,

q55 ¼ 47:5�k1k2 þ 2hð0:25k2
1 þ 16k3Þ þ 4k2

2e1 þ k2
2e2,

q65 ¼ �36:5k1k2e1 � 27:5�k3 � 0:5�k2
1 � 72hk1 � k1k2e2,

q16 ¼ 0,

q26 ¼ 0,

q36 ¼ 0,

q46 ¼ 40hk2
2,

q56 ¼ �35�k
2
2 � 90hk1k2,

q66 ¼ 25k2
2e1 þ 2hð0:25k2

1 þ 25k3Þ þ 79:5�k1k2 þ k2
2e2,

k1 ¼ X 1 þ X 2,

k2 ¼ X 1X 2,

k3 ¼ X 2
1 þ 4X 1X 2 þ X 2

2,

e1 ¼ 0:25� �,

e2 ¼ 16�� 1.
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